Inversion of dopamine responses in striatal medium spiny neurons and involuntary movements.

نویسندگان

  • Li Liang
  • Mahlon R DeLong
  • Stella M Papa
چکیده

Dopamine influence in the striatum is essential to motor behavior and may lead to involuntary movements in pathologic conditions. The basic mechanisms lie in differential dopamine responses of medium spiny neurons (MSNs) contributing to striatal output pathways. The relationship between striatal discharge and mobility is thus critical to understanding the actions of dopamine. Using extracellular recordings in severely parkinsonian monkeys, we examined the activity changes of MSNs during different levels of dopamine stimulation. The activity of single MSNs was recorded continuously throughout conditions of parkinsonian disability, its reversal, and the exhibition of involuntary movements after levodopa administration. Parkinsonian disability was associated with robust and widely distributed increases of MSN firing. In the parkinsonian state, dopamine influx produced both increases and decreases in the discharge rate of MSNs. Furthermore, in contrast to the expected net reduction of activity, dopamine-induced recovery of mobility occurred with predominant further increases of neuronal activity. In contrast, involuntary movements were associated with a distinctive inversion of the dopamine responses. The activity increases and decreases associated with the recovery of mobility were subsequently inverted in a number of neurons, and these bidirectional changes created large differences of discharge across MSNs. Thus, a markedly dysregulated state of striatal activity develops after chronic dopamine denervation and, in such a state of MSN activity, dopamine induces altered and disproportionate responses. These findings point to the fundamental role of dopamine-mediated balance of striatal outputs for normal movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson's disease.

Striatal dopamine loss in Parkinson's Disease (PD) sets into play a variety of compensatory responses to help counter dopamine depletion. Most of these changes involve surviving dopamine neurons, but there are also changes in striatal medium spiny neurons (MSNs), which are the major target of dopamine axons. Among these changes are decreases in MSN dendritic length and spine density, which may ...

متن کامل

Functional connectome of the striatal medium spiny neuron.

Dopamine system disorders ranging from movement disorders to addiction and schizophrenia involve striatal medium spiny neurons (MSNs), yet their functional connectivity has been difficult to determine comprehensively. We generated a mouse with conditional channelrhodopsin-2 expression restricted to medium spiny neurons and assessed the specificity and strength of their intrinsic connections in ...

متن کامل

Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice

Degeneration of dopamine (DA) neurons in Parkinson's disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to th...

متن کامل

Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia.

We have associated behavioral, pharmacological, and quantitative immunohistochemical study in a rat analog of l-DOPA-induced dyskinesia to understand whether alterations in dopamine receptor fate in striatal neurons may be involved in mechanisms leading to movement abnormalities. Detailed analysis at the ultrastructural level demonstrates specific alterations of dopamine D(1) receptor (D(1)R) s...

متن کامل

Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine.

Abnormal involuntary movements and cognitive impairment represent the classical clinical symptoms of Huntington's disease (HD). This genetic disorder involves degeneration of striatal spiny neurons, but not striatal large cholinergic interneurons, and corresponds to a marked decrease in the activity of mitochondrial complex II [succinate dehydrogenase (SD)] in the brains of HD patients. Here we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 30  شماره 

صفحات  -

تاریخ انتشار 2008